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NOTE

Computer Simulation Study of the Properties
of Orthopositronium 3y Decay

INTRODUCTION

The three-photon annihilation of positrons and electrons s
one of the fundamental quantum electrodynamics (QED) pro-
cesses. Sinee ghions and photons are massless particles, the
three-gluon decays from quarkolum are very similar to the
three-photon decays from orthopositronium. Therefore the
three-photon annihilation of positrons and electrons again draws
the attention of many physicists.

The use of computer in the simulation test is one of the
important means of comprehensively studying the properties
of the three photon annihilation. The key step in the simulation
test mentioned above is to realize random sampling for the
threce emission angles and the three energies of gamma rays.

The QED theory has predicted that when the emissive direc-
tions of the three photons are expressed as angles of a;, a3,
a3, as shown in Fig. §, the probability ol that the random vector
{ter, o, «y) falls into the infinitesimal range nearby the given
point is proportional to
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FIG. I. Three gamma rays from positron—clectron annihilation.
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The definitive donain of the random vector (a,, s, o) is
O<o<nl<uo<rni0<amy<7ga +a + o=
27). Its geometrics is the triangle-plane realm ABC, in Fig. 2,
According to the law of energy-momentum conservation, the
three photons are coplanar, thus the three gamma rays energy
may be respectively written as

2m, * sin o,

w, = g(oey, o, ay) = — ; : (2)
1= sl sin a + SNy + SN &z
( ) 2m, - sin o 3)
Wz = g, (;, &3} = " "
1= 8 ’ sin e; + sin @, + sin ay
wy = gs(wy, wy) = 2m, — w) — wy, 4)

where m, = 511 keV is the resting mass of the electron,

Generally the Metropolis method [ 1] is adopted for sampling
the non-normalized distribution, but it is proved to be not opti-
mum in many cases. Because P{o,, a;, o) does not satisfy
the normalized condition, we use the following sampling to
produce the subsamples of the matrix (o, «,, @) and the
matrix (wy, w,, wy), [2] and find it works better,
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FIG, 2. The definitive domain of the random vector (e, o, o3}, Le., the

triangle-plane realm ABC.
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TECHNIQUE FOR SAMPLING 2, its area is V3 72/2. Hence we get the following probability

density function
(I} Assuming that the random vector (|, a3, ) obeys the

uniform distribution in the triangle-plane realm ABC, in Fig.

flal,ab,a) =2V3/(31)  (0<a|<m0<ae}<70<a}<ma+ab+ao)=21)

flal, o)) =2/r? O<a <mrm—o] <o <7)
fla) = 2ai/m? O<ay<m)
flaile)) = Vo) m—a) <a;<w).
Therefore, we make the sampling as follows III) Repeat(IDif A, < 1, otherwise we produce the A,
pling P P
samples of the matrix (e, e, o) and the matrix (wy, wa, wy),
alo=VE -, an=7—& o, respectively, as follows
P _ ro_ i — — —
X3 = 27 — &t ~ gy i1y = ° 77T Oymta ) & 1)
Let Ey= Ploly, ol ), m=0,r=0. oty = *** = O, ) = X2pey
= vy = = !
(II) For the determinate m, #, and E,, we make the sampling CEximt1y = Dsmta,, ) = it
again as follows _ _ _
Wimeny = ° 70 = Wigmea 0 = (i ms1)s Cagmetys Wsginy)
! . ! — : e . — —
@ity = V& T, @y =T ~ & Qigens Woms1) = * 77 = Wanaa, ) = E2Aitm 1) Xami1)s Xsem+1))
W) = 2T = Qg ~ Qduriy- Wity = 00 = Wigta ) = & Wime1)s War1y)-
Pla {aetys O Hnr1)s Oignsny) (IV) LetEn = E, + P(@ipry @y @aen), M =m +
Let A= [(n + 1) 5 + &1 A,:1,m = n + 1. Repeat the steps (ID—(IV) until m = N,
n
In the above expressions the &, &, £, &, and &; are the random
here [A] denoies the integer part of number A. numbers uniformly distributed in the region (0, 1).
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FI1G. 3. The anguiar distribution of gamma rays emitted in the three-photon
annihilation of positrons and electrens (marginal distribution). FIG. 4. The probability distribution of the random vector (o, o, a3).
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FIG. 5. Three gamma rays from incompletely symmetric positron-elec-
tron annihilation.

CONCLUSIONS

According to the subsamples generated by the sampling men-
tioned above, we have drawn the following conclusions.

(I The random variables «,, a5, @3 have an identical front-
dominated distribution. It is a continuous distribution in the
angle range from 0 to m, as shown in Fig. 3.

(II) The numeral values in Fig. 4 indicate the probability
which is projected on the plane 0 — oo (4, j = 1, 2, 3,1 #
J) when the random vector (e, o, e,) fails into the given
region on its definitive domain. From Figs. 4 and 2, we have
found that the probability distribution of the random vector
{o;, a2, oe3) has a symmetry in its definitive domain. The axis
of symmetry is any one of the midlines of the triangle ABC
shown in Fig. 2.

(III) When the threc-photon emission is incompletely sym-
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FIG. 6. The angular distribution of gamma rays emitted in the incompletely
symmetric three photon annihilation. The histogram is cur computational result.
The points are the experimental data of Ref. (3).
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FIG. 7. The nomalized energy spectrum of the gamma ray emitted in the
three-photon annihilation of positrons and electrons.

metric, as shown in Fig. 5, our computational results are in
good agreement with the experimental data in Ref. [3] (see
Fig. 6).

(IV) The random variables w,, w,, w; have an identical
front-dominated distribution, too. It is a continuously rising
distribution in the energy range from 0 to 511 keV, as shown
in Fig. 7. The experimental and theoretical energy spectra of
the gamma rays emitted in the three-photon annihilation of
positrons and electrons are shown in Fig. 8. Because the QED
theory curve in Fig. 8 is the graph of function g(k)

1| ktme— k) 2mm, — k. m.—k
gk) =~ - in
3| (2m, — k)* (2m, — k)P m,
5
+ 2m, — k+ 2mm, — k)l m.— k
k k? f m,
£ 0.3 E
2t
¥ o3
R
Goas [
E8
w 02F
e F
é 018 £
L
o1 [
.05 E
D E 1 1 ' i i 1 i
o 100 200 300 400 500
PHOTON ENERGY (Ka)

FIG. 8. The experimental and theoretical energy spectra of the gamma
ray emitted in the three photon annihilation of positrons and electrons. The
solid curve is the QED theoretical energy spectrum of Ref. (3). The points are
the experimental data of Ref. (6).
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TABLE 1
Some Values of g(k) and f(k)

glky 0002 0004 0007 0.010 0012 0015 0M8 0.021
ftky 0001 0004 0006 0O 0011 0016 0.018 0.020
glky 0049 0052 0055 0058 0061 0064 0066 0.069
fltky 0050 0052 4056 0060 0060 0062 0067 0070
glk) 0099 0102 0105 008 0110 G113 0116 QU9
Sy 0100 0101 0105 0110 0310 0115 0115 0119
g(ky 0148 0.451 0154 4157 01459 0162 0165 0.0168
fik) 0149 0052 0155 0156 0.157 0159 0.163 0.168
glk) 0194 0197 0199 (202 0204 0207 0209 0212
fky 0196 0097 0199 4201 0204 0208 0211 0212
gy 0236 0238 0241 0244 (0246 0249 0233 0256
ftky 0234 0238 0239 0246 (1243 0.248 0251 0256

0.023  0.026 0029 0.032 0035 0038 0040 0043 0.046
0.023 0029 0028 0031 0034 0037 0040 G044 0.045
0072 0075 0078 0081 0084 0087 0090 0.093 0.096
0.070 0.076 0.081 0.083 0086 0087 008 0.0693 0.095
0.122 0125 Q128 (131 0834 0137 0.140  0.142  (Q.145
0122 0125 0127 0131 0133 0139 0138 0140 0.146
0171 0173 0176 0179 G181 0.184 0.187 0189 0.192
0.165  0.172 0179 0180 0.184 0.184 0186 0.188 0.192
0214 0.216 0219 0221 0224 0226 0228 0231 0.233
n215 0215 0220 0221 0224 Q225 0228 0231 0230
0260 0264 0268 0273 0279 0286 029 0304 0319
0260 0266 0271 0276 0278 0284 0294 0305 0319

and from Ref. 4 we get
m m
= ° = _= -
c J glk) dk =2 (" = 9.

Therefore we expand C times of our computational results
and have

fy=c

Nk’ (6)

where £ is the gamma ray energy.

Some values of g(k) and f(k) are shown in Table I. From

Table 1 we get

max [g(k) — f(k)| = 0.003,

where k;, = 5/ — 2.5keV (i = 1, 2, ..., 101) and &,;; = 508 keV.
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FIG. 9. ‘The probabitity distribution of the random vector (w,, w;, ws).

We also performed the y? test for our computational results
and obtained

102

X101y = Z [(n; — N - p,YI(N - py)] = 302,

where

pi == gk + k) 2Hk — ko )C

k=35keV  (j=12,..,101)

ku = 0, k102 =511 keV

and r; is the practical frequency.

The computational results mentioned above show that when
the identical unit is adopted for these three spectra, in Figs. 7
and 8, they are in accord quite well. We have also obtained
that the random vector (wy, wy, ws) approximately obeys the
uniform distribution in its definitive domain, as shown in
Fig. 9, which is (0 < w << 51! keV, 00 < w, < 511 keV,
0 <w; < 511 keV, wy, + wy + wy = 1022 keV).

{V) The results of the analysis mentioned above show that
the subsamples, which are produced by the sampling presented
in this paper, reflect the circumstances of the matrixes quite
well. This sampling is very efficient.
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